ON THE SOLUTIONS OF LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

On Approximate Solutions of Second-Order Linear Partial Differential Equations

In this paper, a Chebyshev polynomial approximation for the solution of second-order partial differential equations with two variables and variable coefficients is given. Also, Chebyshev matrix is introduced. This method is based on taking the truncated Chebyshev expansions of the functions in the partial differential equations. Hence, the result matrix equation can be solved and approximate va...

متن کامل

On Second Order Homogeneous Linear Differential Equations with Liouvillian Solutions

We determine all minimal polynomials for second order homogeneous linear diierential equations with algebraic solutions decomposed into in-variants and we show how easily one can recover the known conditions on diierential Galois groups 12,19,25] using invariant theory. Applying these conditions and the diierential invariants of a diierential equation we deduce an alternative method to the algo...

متن کامل

Nonrectifiable Oscillatory Solutions of Second Order Linear Differential Equations

The second order linear differential equation (p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0] is considered, where p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0]. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.

متن کامل

On the Hyper-order of Solutions of Second Order Linear Differential Equations with Meromorphic Coefficients

In this paper, we investigate the growth of solutions of the linear differential equation 0 = Bf f A f      , where ) (z A and 0) )( (  z B are meromorphic functions. More specifically, we estimate the lower bounded of hyperorder of solutions of the equation with respect to the conditions of ) (z A and 0) )( (  z B if solutions 0 ( f ) of the equation is of infinite order. keywords: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1965

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.53.2.247